$\mathbf{J}_{\mathbf{k}}^{*}$ - RSA CRYPTOSYSTEMS AND $\mathbf{J}_{\mathbf{k}}^{*}$ - RSA SIGNATURE SCHEMES

Dr.S.Thajoddin ${ }^{1}$, S. Makbul Hussian ${ }^{2}$, Dr.SAM Gazni ${ }^{3}$

${ }^{1,2}$ Lecturer in Mathematics, ${ }^{3}$ Lecturer in Physics, Osmania College , Kurnool AP, India
Abstract: By using $\mathrm{J}_{\mathrm{k}}(\mathrm{n})$ and by considering $\left(\mathrm{Z}_{\mathrm{J}_{\mathrm{k}}(\mathrm{n})},+_{\mathrm{J}_{\mathrm{k}}(\mathrm{n})}, X_{\mathrm{J}_{\mathrm{k}}(\mathrm{n})}\right)$, a commutative ring with unity as a message space we develop new variants of RSA cryptosystem and RSA signature schemes. We name them as J_{k}^{*} RSA cryptosystem and J_{k}^{*} RSA signature schemes. These schemes are explained and also analyze the signifance and complexity of the above schemes.

Keywords : $\mathrm{J}_{\mathrm{k}}(\mathrm{n})$, RSA cryptosystem, signature schemes, analyze, signifance.

INTRODUCTION

The RSA Cryptosystem was the first public key cryptosystem and it is still most widely used cryptography algorithm in the world. This cryptosystem would come a year later as an application of famous problem, integer factorization. We develop new variants of RSA cryptosystem and RSA signature schemes. We name them as J_{k}^{*} RSA cryptosystem and J_{k}^{*} RSA signature schemes. These schemes are explained and also analyze the signifance and complexity of the above schemes.

$\boldsymbol{J}_{\mathbf{k}}^{*}$ - RSA Cryptosystem:

The algorithm for key generation, encryption and decryption of $J_{k}^{*}-$ RSA Cryptosystem is described as follows.

Key Generation:

Choose two large primes p and q such that $\mathrm{n}=\mathrm{pq}$.
Let K be an integer such that $1 \leq \mathrm{K} \leq \mathrm{n}$.
Compute $J_{K}(n)=n^{k} \underset{p / n}{\pi}\left(1-1 / p^{k}\right)$ and consider
$\left(Z_{J_{K}}(n),{ }^{+} J_{K}(n),{ }^{x} J_{k}(n)\right)$ a Commutative ring with unity of order $J_{K}(n)$ as a message space.
Assign the numerical equivalents to the alphabets taken from $Z_{J_{K}}(n)$
M is the message belongs to. $Z_{J_{K}}(n)$
Select a random integer e such that $\operatorname{gcd}\left(e, J_{K}(n)=1\right.$, where $1<e<J_{K}(n)$
$e M \bmod J_{K}(n) \in \operatorname{message}$ space $Z_{J_{K}}(n)$
Select integer such that ed $\equiv 1\left(\bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n})\right)$
i.e., $\left.d=e^{-1} \bmod J_{K}(n)\right), 1<e<J_{K}(n)$

Public - Key PK $=J_{\mathrm{k}}(\mathrm{n})$, e $)$
Private Key SK $=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n})\right.$, d $)$

Encryption:

Given a public-key $\left(J_{K}(n)\right.$, e) and a message $M \in Z_{J_{K}}(n)$, compute the ciphertext
$\mathrm{C} \quad=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{J}_{\mathrm{k}}(\mathrm{n})$
$=\mathrm{e} M \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n})$

Decryption:

Given a public-key ($\left.J_{K}(n), d\right)$ and cipher text C, compute the message
$\mathrm{M} \quad=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{J}_{\mathrm{k}}(\mathrm{n})$

$$
=\mathrm{d} \cdot \mathrm{C} \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n})
$$

The correctness of $\mathrm{J}_{\mathrm{k}}-$ RSA decryption is verified as follows

$$
\begin{aligned}
C^{d} \bmod J_{k}(n)=\left(M^{\mathrm{e}}\right)^{\mathrm{d}} & \bmod J_{k}(n) \\
& =M^{\mathrm{ed}} \bmod J_{k}(n) \\
& =(e d) . M \bmod J_{k}(n) \\
& =I . M \cdot \bmod J_{k}(n) \\
& =M
\end{aligned}
$$

Simple example of $\mathrm{J}_{\mathrm{k}}^{*}$ - RSA Cryptosystem:

Choose $\mathrm{p}=3$, $\mathrm{q}=5$

$$
\therefore \mathrm{n}=\mathrm{pq}=15
$$

Let $\mathrm{k}=2$

$$
\begin{gathered}
\mathrm{J}_{\mathrm{k}}(\mathrm{n})=\mathrm{J}_{2}(15)=\mathrm{J}_{2}(3 \times 5)=\left(3^{2}-1\right)\left(5^{2}-1\right) \\
=8 \times 24=192
\end{gathered}
$$

$\therefore\left(\mathrm{Z}_{192},+_{192}, \mathrm{X}_{192}\right)$ is a commutative ring with unity of order 192 . Consider this as a message space.

Assign the numerical equivalents to the alphabets taken from Z_{192}. We can assign the numerical values randomly to the alphabets taken from Z_{192} to use this system to keep secret.

A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Key Generation:

Since gcd $(5,192)=1$ and $1<5<192$,
\therefore We take e $=5$
Selected d such that ed $\equiv 1 \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n})$
i.e. $5 \mathrm{~d} \equiv 1 \bmod 192$
$5 \times 77 \equiv 1 \bmod 192$
$\therefore \mathrm{d}=77$

Public - Key PK $\left.=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{e}\right)=192.5\right)$
Private Key SK $=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{d}\right)=(192,77)$

Plaint text	H	E	L	L	O	W	O	R	L	D
Numerical equivalents	8	5	12	12	15	22	15	18	12	4
Message	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	M_{8}	M_{9}	M_{10}

ENCRYPTION	DECRYPTION
$\begin{aligned} \mathrm{C}_{1} & =\mathrm{M}_{1}{ }^{\mathrm{e}} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =\mathrm{e} \mathrm{M}_{1} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 8 \bmod 192=40 \end{aligned}$	$\begin{aligned} \mathrm{M}_{1} & =\mathrm{C}_{1}{ }^{\mathrm{d}} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =\mathrm{dC}_{1} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 40 \bmod 192 \\ & =3080 \bmod 192=8 \end{aligned}$
$\begin{aligned} \mathrm{C}_{2} & =\mathrm{eM}_{2} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 5 \bmod 192 \\ & =25 \bmod 192=25 \end{aligned}$	$\begin{aligned} \mathrm{M}_{2} & =\mathrm{dc}_{2} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 25 \bmod 192 \\ & =1925 \bmod 192=5 \end{aligned}$
$\begin{aligned} \hline \mathrm{C}_{3} & =\mathrm{eM}_{3} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 12 \bmod 192 \\ & =60 \bmod 192=60 \end{aligned}$	$\begin{aligned} \mathrm{M}_{3} & =\mathrm{dc}_{3} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 60 \bmod 192 \\ & =4620 \bmod 192=12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{4} & =\mathrm{eM}_{4} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 12 \bmod 192 \\ & =60 \end{aligned}$	$\begin{aligned} \mathrm{M}_{4} & =\mathrm{dc}_{4} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 60 \bmod 192 \\ & =4620 \bmod 192=12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{5} & =\mathrm{eM}_{5} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 15 \bmod 192 \\ & =75 \end{aligned}$	$\begin{aligned} \mathrm{M}_{5} & =\mathrm{dc}_{5} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 75 \bmod 192 \\ & =5775 \bmod 192=15 \end{aligned}$
$\begin{aligned} \mathrm{C}_{6} & =\mathrm{eM}_{6} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 22 \bmod 192 \\ & =110 \end{aligned}$	$\begin{aligned} \mathrm{M}_{6} & =\mathrm{dc}_{6} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 110 \bmod 192 \\ & =8470 \bmod 192=22 \end{aligned}$
$\begin{aligned} \mathrm{C}_{7} & =\mathrm{eM}_{7} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 15 \bmod 192 \\ & =75 \end{aligned}$	$\begin{aligned} \mathrm{M}_{7} & =\mathrm{dc}_{7} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 75 \bmod 192 \\ & =5775 \bmod 192=15 \end{aligned}$
$\begin{aligned} \mathrm{C}_{8} & =\mathrm{eM}_{8} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 18 \bmod 192 \\ & =90 \end{aligned}$	$\begin{aligned} \mathrm{M}_{8} & =\mathrm{dc}_{8} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 90 \bmod 192 \\ & =6390 \bmod 192=18 \end{aligned}$
$\begin{aligned} \mathrm{C}_{9} & =\mathrm{eM}_{9} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 12 \bmod 192 \\ & =60 \end{aligned}$	$\begin{aligned} \mathrm{M}_{9} & =\mathrm{dc}_{9} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 60 \bmod 192 \\ & =4620 \bmod 192=12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{10} & =\mathrm{eM}_{9} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 4 \bmod 192 \\ & =20 \bmod 192 \\ & =20 \end{aligned}$	$\begin{aligned} \mathrm{M}_{10} & =\mathrm{dc}_{10} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 20 \bmod 192 \\ & =1540 \bmod 192 \\ & =4 \end{aligned}$

$\boldsymbol{J}_{\mathbf{k}}^{*}$ - RSA SIGNATURE SCHEME :

The algorithm for key generation, signature generation and verification of J_{k}-RSA Signature Scheme is described as follows.

Key Generation:

Choose two large primes p and q such that $\mathrm{n}=\mathrm{pq}$.
Let k be an integer such that $1<\mathrm{k}<\mathrm{n}$.
Compute $\mathrm{J}_{\mathrm{k}}(\mathrm{n})=\mathrm{n}_{\mathrm{p} \mid \mathrm{n}}^{\mathrm{k}} \pi_{\mathrm{n}}\left(1-1 / \mathrm{p}^{\mathrm{k}}\right)$ and
Consider $\left(\mathrm{Z}_{\mathrm{J}_{k}}(\mathrm{n}),{ }^{+} \mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{X}_{\mathrm{J}_{k}}(\mathrm{n})\right.$) a commutative ring with unity of order $\mathrm{J}_{\mathrm{k}}(\mathrm{n})$ as a message space. Assign the numerical equivalents to the alphabets taken from $Z_{J_{K}(n)}$

M is the message belongs to $\mathrm{Z}_{\mathrm{J}_{\mathrm{K}}}(\mathrm{n})$
Select a random integer e such that
$\operatorname{gcd}\left(\mathrm{e}, \mathrm{J}_{\mathrm{k}}(\mathrm{n})\right)=1$, where $1<\mathrm{e}<\mathrm{J}_{\mathrm{k}}(\mathrm{n})$ and
$e M \bmod J_{k}(n) \in \operatorname{message} \operatorname{space} Z_{J_{K}}(n)$
Select integer d such that ed $\equiv 1\left(\bmod J_{k}(n)\right)$
i.e., $d=e^{-1} \bmod J_{k}(n)$ where $1 \leq d \leq J_{k}(n)$

Public-Key PK $=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{e}\right)$
Private Key SK $=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{d}\right)$

Signature Generation: Given a private key $\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{d}\right)$ and a message $\mathrm{Z}_{\mathrm{J}_{\mathrm{k}}}(\mathrm{n})$,
Compute the signature $C \quad=\mathrm{M}^{\mathrm{d}} \bmod \mathrm{J}_{\mathrm{k}}(\mathrm{n})$

$$
=\mathrm{dM} \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n})
$$

Signature Verification: Given a public-key ($\left.\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{e}\right)$ and a signature C, compute the message

$$
\begin{aligned}
\mathrm{M} & =\mathrm{C}^{\mathrm{e}} \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n}) \\
& =\mathrm{e} . C \bmod \mathrm{~J}_{\mathrm{k}}(\mathrm{n})
\end{aligned}
$$

The correctness of signature verification algorithm of $\boldsymbol{J}_{\mathbf{k}}^{*}$ RSA Signature scheme is verified as follows.

$$
\begin{aligned}
C^{e} \bmod J_{k}(n)=\left(M^{d}\right)^{e} & \bmod J_{k}(n) \\
& =M^{e d} \bmod J_{k}(n) \\
& =(e d) M \bmod J_{k}(n) \\
& =1 \cdot \operatorname{Mmod}_{\mathrm{k}}(n)=M
\end{aligned}
$$

Simple example of $\mathbf{J}_{\mathbf{k}}$-RSA Signature Scheme.

Choose $\mathrm{p}=3 ; \mathrm{q}=5$
$\therefore \mathrm{n}=\mathrm{pq}=15$ Let $\mathrm{k}=2$

$$
\begin{aligned}
\mathrm{J}_{\mathrm{k}}(\mathrm{n})=\mathrm{J}_{2}(15)=\mathrm{J}_{2}(3 \times 5) & =\left(3^{2}-1\right)\left(5^{2}-1\right) \\
& =8 \times 24 \\
& =192
\end{aligned}
$$

$\left(\mathrm{Z}_{192},+_{192}, \mathrm{X}_{192}\right)$ is a commutative ring with unity of order 192 . Consider this as a message space.
Assign the numerical equivalents to the alphabets taken from Z_{192}. We can assign the numerical values randomly to the alphabets taken from Z_{192} to use this system to keep secret.

A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

International Journal of IT \& Knowledge Management (ISSN: 0973-4414)
July-Dec 2008, Vol 1, Number-2, pp 571-577

Key Generation:

Since gcd $(5,192)=1$ and $1<5<192$
\therefore we take $\mathrm{e}=5$
Select d such that ed $=1 \bmod J_{k}(n)$
i.e. $5 \mathrm{~d} \equiv 1 \bmod _{192}$
$5 \times 77 \equiv 1 \bmod 192$
$\therefore \mathrm{d}=77$

Public-Key PK $=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{e}\right)=(192,5)$
Private Key $\mathrm{SK}=\left(\mathrm{J}_{\mathrm{k}}(\mathrm{n}), \mathrm{d}\right)=(192,77)$

Plaint text	H	E	L	L	O	W	O	R	L	D
Numerical equivalents	8	5	12	12	15	22	15	18	12	4
Message	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	M_{8}	M_{9}	M_{10}

SINGATURE GENERATION	SIGNATURE VERIFICATION
$\begin{aligned} \mathrm{C}_{1} & =\mathrm{M}_{1}{ }^{\mathrm{d}} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =\mathrm{dM}_{1} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 8 \bmod 192 \\ & =616 \bmod 192=40 \end{aligned}$	$\begin{aligned} \mathrm{M}_{1} & =\mathrm{C}_{1}{ }^{\mathrm{e}} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =\mathrm{ec}_{1} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 40 \bmod 192 \\ & =200 \bmod 192=8 \end{aligned}$
$\begin{aligned} \mathrm{C}_{2} & =\mathrm{dM}_{2} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 5 \bmod 192 \\ & =385 \bmod 192=1 \end{aligned}$	$\begin{aligned} \mathrm{M}_{2} & =\mathrm{eC}_{2} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 1 \bmod 192 \\ & =5 \end{aligned}$
$\begin{aligned} \mathrm{C}_{3} & =\mathrm{dM}_{3} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \mathrm{x} 12 \bmod 192 \\ & =924 \bmod 192=156 \end{aligned}$	$\begin{aligned} \mathrm{M}_{3} & =\mathrm{ec}_{3} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 156 \bmod 192 \\ & =780 \bmod 192=12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{4} \quad & =\mathrm{dM}_{4} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 12 \bmod 192 \\ & =924 \bmod 192=156 \end{aligned}$	$\begin{aligned} \mathrm{M}_{4} & =\mathrm{ec}_{4} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 156 \bmod 192 \\ & =12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{5} & =\mathrm{dM}_{5} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 15 \bmod 192 \\ & =1155 \bmod 192=3 \end{aligned}$	$\begin{aligned} \mathrm{M}_{5} & =\mathrm{ec}_{5} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 3 \bmod 192 \\ & =15 \end{aligned}$

$\begin{aligned} \mathrm{C}_{6} & =\mathrm{dM}_{6} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 22 \bmod 192 \\ & =1694 \bmod 192=158 \end{aligned}$	$\begin{aligned} \mathrm{M}_{6} & =\mathrm{ec}_{6} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 158 \bmod 192 \\ & =790 \bmod 192=22 \end{aligned}$
$\begin{aligned} \mathrm{C}_{7} & =\mathrm{dM}_{7} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 15 \bmod 192 \\ & =1155 \bmod 192=3 \end{aligned}$	$\begin{aligned} \mathrm{M}_{7} & =\mathrm{ec}_{7} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 3 \bmod 192 \\ & =15 \end{aligned}$
$\begin{aligned} \mathrm{C}_{8} & =\mathrm{dM}_{8} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 18 \bmod 192 \\ & =1386 \bmod 192=42 \end{aligned}$	$\begin{aligned} \mathrm{M}_{8} & =\mathrm{ec}_{8} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 42 \bmod 192 \\ & =210 \bmod 192=18 \end{aligned}$
$\begin{aligned} \mathrm{C}_{9} & =\mathrm{d} \mathrm{M}_{9} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 12 \bmod 192 \\ & =156 \end{aligned}$	$\begin{aligned} \mathrm{M}_{9} & =\mathrm{ec}_{9} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 156 \bmod 192 \\ & =12 \end{aligned}$
$\begin{aligned} \mathrm{C}_{10} & =\mathrm{dM}_{10} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =77 \times 4 \bmod 192 \\ & =308 \bmod 192 \\ & =116 \end{aligned}$	$\begin{aligned} \mathrm{M}_{10} & =\mathrm{ec}_{10} \bmod \mathrm{~J}_{\mathrm{K}}(\mathrm{n}) \\ & =5 \times 116 \bmod 192 \\ & =580 \bmod 192 \\ & =4 \end{aligned}$

SIGNIFICANCE AND COMPLEXITY OF THE $J_{K}^{*}-$ RSA AND J_{K}^{*}-RSA SIGNATURE SCHEMES:

$J_{K}^{*}-$ RSA and $J_{K}^{*}-$ RSA Signature Schemes have the following significant features.

1) Both $J_{K}^{*}-$ RSA and $J_{K}^{*}-$ RSA Signature Schemes are based on famous integer factorization problem.
2) The encryption algorithms of $J_{K}^{*}-$ RSA and $J_{K}^{*}-$ RSA Signature Schemes are one way functions unless, some trap door function is given, we cannot decrypt the plaintext from the cipher text.
3) Since, we have taken $\left({ }^{\mathrm{z}} \mathbf{J}_{\mathrm{K}(\mathrm{n})}{ }^{+} \mathbf{J}_{\mathrm{K}(\mathrm{n})}{ }^{\mathrm{X}} \mathbf{J}_{\mathrm{K}(\mathrm{n})}\right)$ a commutative ring with unity as a message space we can use both the operations ${ }^{+} \mathbf{J}_{\mathrm{K}(\mathrm{n}),}$, ${ }^{\mathrm{n}}{ }^{\mathrm{X}} \mathrm{J}_{\mathrm{K}(\mathrm{n})}$ in these cryptosystems.
4) Since, k is a positive integer such that $1 \leq \mathrm{k} \leq \mathrm{n}$, therefore k is our' choice. By choosing appropriate k , we can make the message space as large as possible. If we assign numerical equivalents to the alphabets; randomly from this message space, certainly it is very difficult to recover the plain text from ciphertext. So these cryptosystems are very much secure and complex.

International Journal of IT \& Knowledge Management (ISSN: 0973-4414)
July-Dec 2008, Vol 1, Number-2, pp 571-577

REFERENCES:

1) Solomon, D.Data Privacy and security, Berlin : Springer 2003.
2) Trappe W and Washington L Introduction to cryptography and coding theory. Upper Saddle River, NJ : Prectice Hall, 2006.
3) Preprzyk, J.Hardjono I, and Seberry J.Fundmentals of Computer security Berlin : Springer, 2003.
4) Mao.W.Modrn Cryptography, Upper Saddle River, NJ: Practice Hall 2004.
5) Kanfman, C.Perlman, R. and Specimer, M.Network Security, Upper Saddla River, NJ : Practice Hall, 2004.
6) Menezes.A. Oorschot.P, and Vanstone, S.Handbook of applied cryptography. Newyork CRC press, 1997.
7) R.Rivest:A. Shamir and L.Adleman : A Method for obtaining Digital signatures and public -key cryptosystems communications of the ACM 21 (2), pages 120-126, 1978.
8) J.J.Quisquater and C.Couvreur. Fast Deciphernent Algorithm for RSA public - key cryptosystem. Electronic Lectures, Vol-18, 905-907, 1982.
9) T.Collins, D,Hopkins, S.Langform and M.Sabin public key cryptographic Apparatus and Method U.S.Parent \#5,848, 159, January - 1997
10) D.Bone and H.Shacham. Fast variantsof RSA. RSA laboratus 2002.
11) Alison Monteiro Paixao : An efficient of vaciant of the RSA cryptosystem.
12) T.M.Apostal, introduction to analytic number theory, springer International Students Edition 1980.
