$\boldsymbol{J}_{\boldsymbol{k}}^{\star}$ - RSA CRYPTOSYSTEMS AND $\boldsymbol{J}_{\boldsymbol{k}}^{\star}$ - RSA SIGNATURE SCHEMES

Dr.S.Thajoddin¹, S. Makbul Hussian², Dr.SAM Gazni³

^{1,2}Lecturer in Mathematics, ³Lecturer in Physics, Osmania College, Kurnool AP, India

Abstract: By using $J_k(n)$ and by considering $(Z_{J_k(n)}, +_{J_k(n)}, X_{J_k(n)})$, a commutative ring with unity as a message space we develop new variants of RSA cryptosystem and RSA signature schemes. We name them as J_k^* RSA cryptosystem and J_k^* RSA signature schemes. These schemes are explained and also analyze the signifance and complexity of the above schemes.

Keywords : $J_k(n)$, RSA cryptosystem, signature schemes, analyze, signifance.

INTRODUCTION

The RSA Cryptosystem was the first public key cryptosystem and it is still most widely used cryptography algorithm in the world. This cryptosystem would come a year later as an application of famous problem, integer factorization. We develop new variants of RSA cryptosystem and RSA signature schemes. We name them as J_k^* RSA cryptosystem and J_k^* RSA signature schemes. These schemes are explained and also analyze the signifance and complexity of the above schemes.

J^{*}_k - RSA Cryptosystem:

The algorithm for key generation, encryption and decryption of J_k^* -RSA Cryptosystem is described as follows.

Key Generation:

Choose two large primes p and q such that n = pq.

Let K be an integer such that $1 \le K \le n$.

Compute $J_{K}(n) = n^{k} \frac{\pi}{p/n} (1 - 1/p^{k})$ and consider

 $(Z_{J_{K}}(n), J_{K}(n), J_{K}(n))$ a Commutative ring with unity of order $J_{K}(n)$ as a message space. Assign the numerical equivalents to the alphabets taken from $Z_{J_{K}}(n)$

M is the message belongs to. $Z_{J_{\kappa}(n)}$

Select a random integer e such that gcd (e, $J_{K}(n)=1$, where $1 \le J_{K}(n)$

e M mod $J_{K}(n) \in message space Z_{J_{K}}(n)$

Select integer such that ed $\equiv 1 \pmod{J_{\kappa}(n)}$

i.e., $d=e^{-1} \mod J_{K}(n)$, $1 < e < J_{K}(n)$

Public – Key $PK = J_k(n)$, e)	
Private Key SK = $(J_k(n), d)$	

Encryption:

Given a public-key $(J_{K}(n), e)$ and a message $M \in Z_{J_{K}(n)}$, compute the ciphertext

 $= M^{e} \mod J_{k}(n)$ $= eM \mod J_{k}(n)$

Decryption:

С

Given a public-key $(J_{K}(n), d)$ and cipher text C, compute the message

 $M = C^{d} \mod J_{k}(n)$ = d.C mod J_k(n) The correctness of J_k – RSA decryption is verified as follows $C^{d} \mod J_{k}(n) = (M^{e})^{d} \mod J_{k}(n)$ = M^{ed} mod J_k(n) = (ed). M mod J_k(n) = I.M. mod J_k(n) = M

Simple example of J_k^* - RSA Cryptosystem:

Choose p =3, q=5

$$\therefore$$
 n = pq = 15
Let k = 2
 $J_k(n) = J_2(15) = J_2(3 \times 5) = (3^2 - 1)(5^2 - 1)$
 $= 8 \times 24 = 192$

 $(Z_{192}, +_{192}, X_{192})$ is a commutative ring with unity of order 192. Consider this as a message space.

Assign the numerical equivalents to the alphabets taken from Z_{192} . We can assign the numerical values randomly to the alphabets taken from Z_{192} to use this system to keep secret.

А	В	С	D	E	F	G	Η	Ι	J	Κ	L	М
1	2	3	4	5	6	7	8	9	10	11	12	13
Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
14	15	16	17	18	19	20	21	22	23	24	25	26

Key Generation:

Since gcd (5,192) = 1 and 1<5<192,

 \therefore We take e = 5

Selected d such that $ed \equiv 1 \mod J_k(n)$ i.e. $5d \equiv 1 \mod 192$

 $5 \ge 77 \equiv 1 \mod 192$

 $\therefore d = 77$

Public – Key PK = $(J_k (n), e) = 192.5)$	
Private Key SK = $(J_k(n), d) = (192, 77)$	

Plaint text	Н	Е	L	L	0	W	0	R	L	D
Numerical equivalents	8	5	12	12	15	22	15	18	12	4
Message	M ₁	M ₂	M ₃	M ₄	M ₅	M ₆	M ₇	M ₈	M ₉	M ₁₀

ENCRYPTION	DECRYPTION
$C_1 = M_1^e \mod J_K(n) = eM_1 \mod J_K(n) = 5 x 8 \mod 192 = 40$	$M_1 = C_1^{d} \mod J_K(n)$ = dC_1 mod J_K(n) = 77 x 40 mod 192 = 3080 mod 192 =8
$\begin{array}{ll} C_2 &= eM_2 mod J_K (n) \\ &= 5 x 5 mod 192 \\ &= 25 mod 192 = 25 \end{array}$	
$\begin{array}{l} C_3 &= eM_3 \text{mod} J_K (n) \\ &= 5 x 12 \text{mod} 192 \\ &= 60 \text{mod} 192 = 60 \end{array}$	
$C_4 = eM_4 \mod J_K(n) = 5 x 12 \mod 192 = 60$	
$\begin{array}{ll} C_5 &= eM_5 \text{mod} J_K (n) \\ &= 5 x 15 \text{mod} 192 \\ &= 75 \end{array}$	
$\begin{array}{l} C_6 &= eM_6 \mod J_K(n) \\ &= 5 \ x \ 22 \ mod \ 192 \\ &= 110 \end{array}$	
$C_7 = eM_7 \mod J_K(n) = 5 x 15 \mod 192 = 75$	$ \begin{split} M_7 &= dc_7 \bmod J_K(n) \\ &= 77 \ x \ 75 \ mod \ 192 \\ &= 5775 \ mod \ 192 = 15 \end{split} $
$C_8 = eM_8 \mod J_K(n) = 5 x 18 \mod 192 = 90$	$ \begin{split} M_8 &= dc_8 \mod J_K(n) \\ &= 77 \ x \ 90 \ mod \ 192 \\ &= 6390 \ mod \ 192 = 18 \end{split} $
$C_9 = eM_9 \mod J_K(n) = 5 x 12 \mod 192 = 60$	
$C_{10} = eM_9 \mod J_K(n)$ = 5 x 4 mod 192 = 20 mod 192 = 20	$ \begin{aligned} M_{10} &= dc_{10} \mod J_{K}(n) \\ &= 77 \ x \ 20 \ mod \ 192 \\ &= 1540 \ mod \ 192 \\ &= 4 \end{aligned} $

J_k^* - RSA SIGNATURE SCHEME :

The algorithm for key generation, signature generation and verification of J_k -RSA Signature Scheme is described as follows.

Key Generation:

Choose two large primes p and q such that n = pq.

Let k be an integer such that 1 < k < n.

Compute
$$J_k(n) = n^k \pi_{p|n}(1-1/p^k)$$
 and

Consider $(Z_{J_k(n)}, +J_k(n), X_{J_k(n)})$ a commutative ring with unity of order $J_k(n)$ as a

message space. Assign the numerical equivalents to the alphabets taken from $Z_{J_{K}(n)}$

M is the message belongs to $Z_{J_{K}(n)}$

Select a random integer e such that

gcd (e, $J_k(n)$) =1, where $1 < e < J_k(n)$ and

eM mod J_k (n) \in message space $Z_{J_{K}(n)}$

Select integer d such that $ed \equiv 1 \pmod{J_k(n)}$

i.e., $d = e^{-1} \mod J_k(n)$ where $1 \le d \le J_k(n)$

Public-Key PK = $(J_k(n), e)$	
Private Key $SK = (J_k(n), d)$	

Signature Generation: Given a private key $(J_k(n), d)$ and a message $Z_{J_k(n)}$,

Compute the signature C $= M^d \mod J_k(n)$

$$=$$
 dM mod J_k (n)

Signature Verification: Given a public-key $(J_k(n), e)$ and a signature C, compute the message

 $M = C^{e} \mod J_{k}(n)$ = e.C mod J_k(n)

The correctness of signature verification algorithm of $\mathbf{J}_{\mathbf{k}}^{*}$ RSA Signature scheme is verified as follows.

$$\begin{aligned} C^{e} \bmod J_{k} (n) &= (M^{d})^{e} \bmod J_{k} (n) \\ &= M^{ed} \bmod J_{k} (n) \\ &= (ed) \ M \ mod \ J_{k} (n) \\ &= 1.Mmod \ J_{k} (n) = M \end{aligned}$$

Simple example of J_k-RSA Signature Scheme.

Choose
$$p = 3$$
; $q = 5$
 $\therefore n = pq = 15$ Let $k = 2$
 $J_k(n) = J_2(15) = J_2(3 \times 5) = (3^2 - 1) (5^2 - 1)$
 $= 8 \times 24$
 $= 192.$

 $(Z_{192}, +_{192}, X_{192})$ is a commutative ring with unity of order 192. Consider this as a message space.

Assign the numerical equivalents to the alphabets taken from Z_{192} . We can assign the numerical values randomly to the alphabets taken from Z_{192} to use this system to keep secret.

А	В	C	D	E	F	G	Н	Ι	J	K	L	М
1	2	3	4	5	6	7	8	9	10	11	12	13
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Key Generation:

Since gcd (5, 192) = 1 and 1 < 5 < 192 \therefore we take e = 5 Select d such that ed = 1 mod J_k (n) i.e. 5d \equiv 1 mod₁₉₂ 5 x 77 \equiv 1 mod 192 \therefore d = 77

Public-Key PK = $(J_k (n), e) = (192, 5)$
Private Key SK = $(J_k (n), d) = (192, 77)$

Plaint text	Н	Е	L	L	0	W	0	R	L	D
Numerical equivalents	8	5	12	12	15	22	15	18	12	4
Message	M_1	M ₂	M ₃	M_4	M ₅	M_6	M ₇	M ₈	M ₉	M ₁₀

SINGATURE GENERATION	SIGNATURE VERIFICATION
$C_1 = M_1^{d} \mod J_K(n) = dM_1 \mod J_K(n) = 77 x 8 \mod 192 = 616 \mod 192 = 40$	$ \begin{split} M_1 &= C_1^{\ e} \ mod \ J_K(n) \\ &= ec_1 \ mod \ J_K(n) \\ &= 5 \ x \ 40 \ mod \ 192 \\ &= 200 \ mod \ 192 = 8 \end{split} $
$\begin{array}{ll} C_2 &= dM_2 mod J_K (n) \\ &= 77 x 5 mod 192 \\ &= 385 mod 192 = 1 \end{array}$	$ \begin{aligned} M_2 &= eC_2 \mod J_K(n) \\ &= 5 \ge 1 \mod 192 \\ &= 5 \end{aligned} $
$\begin{array}{ll} C_3 &= dM_3 mod J_K (n) \\ &= 77x 12 mod 192 \\ &= 924 mod 192 = 156 \end{array}$	
$\begin{array}{ll} C_4 &= dM_4 mod J_K (n) \\ &= 77 x 12 mod 192 \\ &= 924 mod 192 = 156 \end{array}$	$ \begin{split} M_4 &= ec_4 \mbox{ mod } J_K(n) \\ &= 5 \mbox{ x } 156 \mbox{ mod } 192 \\ &= 12 \end{split} $
$C_5 = dM_5 \mod J_K(n)$ = 77 x 15 mod 192 = 1155 mod 192 = 3	$ \begin{split} M_5 &= ec_5 \mod J_K(n) \\ &= 5 \ x \ 3 \ mod \ 192 \\ &= 15 \end{split} $

$\begin{array}{ll} C_6 &= dM_6 \mod J_K(n) \\ &= 77 \ x \ 22 \ mod \ 192 \\ &= 1694 \ mod \ 192 = 158 \end{array}$	
$C_7 = dM_7 \mod J_K(n)$ = 77 x 15 mod 192 = 1155 mod 192 = 3	$ \begin{split} M_7 &= ec_7 \mod J_K(n) \\ &= 5 \ x \ 3 \ mod \ 192 \\ &= 15 \end{split} $
$C_8 = dM_8 \mod J_K(n)$ = 77 x 18 mod 192 = 1386 mod 192=42	$M_8 = ec_8 \mod J_K(n)$ = 5 x 42 mod 192 = 210 mod 192 = 18
$C_9 = dM_9 \mod J_K(n) = 77 x 12 \mod 192 = 156$	$ \begin{split} M_9 &= ec_9 \bmod J_K(n) \\ &= 5 \ x \ 156 \ mod \ 192 \\ &= 12 \end{split} $
$C_{10} = dM_{10} \mod J_{K}(n)$ = 77 x 4 mod 192 = 308 mod 192 = 116	$M_{10} = ec_{10} \mod J_{K}(n)$ = 5 x 116 mod 192 = 580 mod 192 = 4

SIGNIFICANCE AND COMPLEXITY OF THE J_K^* -RSA AND J_K^* -RSA SIGNATURE SCHEMES:

 J_{K}^{*} -RSA and J_{K}^{*} -RSA Signature Schemes have the following significant features.

- 1) Both J_{K}^{*} -RSA and J_{K}^{*} -RSA Signature Schemes are based on famous integer factorization problem.
- 2) The encryption algorithms of J_K^* -RSA and J_K^* -RSA Signature Schemes are one way functions unless, some trap door function is given, we cannot decrypt the plaintext from the cipher text.
- 3) Since, we have taken $\left({}^{z}J_{K(n)}^{+}J_{K(n)}^{X}J_{K(n)}\right)a$ commutative ring with unity as a message space we can use both the operations ${}^{+}J_{K(n)}$, and ${}^{X}J_{K(n)}$ in these cryptosystems.
- 4) Since, k is a positive integer such that $1 \le k \le n$, therefore k is our' choice. By choosing appropriate k, we can make the message space as large as possible. If we assign numerical equivalents to the alphabets; randomly from this message space, certainly it is very difficult to recover the plain text from ciphertext. So these cryptosystems are very much secure and complex.

REFERENCES:

- 1) Solomon, D.Data Privacy and security, Berlin : Springer 2003.
- 2) Trappe W and Washington L Introduction to cryptography and coding theory. Upper Saddle River, NJ : Prectice Hall, 2006.
- 3) Preprzyk, J.Hardjono I, and Seberry J.Fundmentals of Computer security Berlin : Springer, 2003.
- 4) Mao.W.Modrn Cryptography, Upper Saddle River, NJ: Practice Hall 2004.
- 5) Kanfman, C.Perlman, R. and Specimer, M.Network Security, Upper Saddla River, NJ : Practice Hall, 2004.
- 6) Menezes.A. Oorschot.P, and Vanstone, S.Handbook of applied cryptography. Newyork CRC press, 1997.
- 7) R.Rivest : A. Shamir and L.Adleman : A Method for obtaining Digital signatures and public –key cryptosystems communications of the ACM 21 (2), pages 120-126, 1978.
- 8) J.J.Quisquater and C.Couvreur. Fast Deciphernent Algorithm for RSA public key cryptosystem. Electronic Lectures, Vol-18, 905-907, 1982.
- 9) T.Collins, D,Hopkins, S.Langform and M.Sabin public key cryptographic Apparatus and Method U.S.Parent #5,848, 159, January 1997
- 10) D.Bone and H.Shacham. Fast variantsof RSA. RSA laboratus 2002.
- 11) Alison Monteiro Paixao : An efficient of vaciant of the RSA cryptosystem.
- 12) T.M.Apostal, introduction to analytic number theory, springer International Students Edition 1980.